TNF-alpha activates solitary nucleus neurons responsive to gastric distension.

نویسندگان

  • G S Emch
  • G E Hermann
  • R C Rogers
چکیده

Tumor necrosis factor-alpha (TNF-alpha) is liberated as part of the immune response to antigenic challenge, carcinogenesis, and radiation therapy. Previous studies have implicated elevated circulating levels of this cytokine in the gastric hypomotility associated with these disease states. Our earlier studies suggest that a site of action of TNF-alpha may be within the medullary dorsal vagal complex. In this study, we describe the role of TNF-alpha as a neuromodulator affecting neurons in the nucleus of the solitary tract that are involved in vago-vagal reflex control of gastric motility. The results presented herein suggest that TNF-alpha may induce a persistent gastric stasis by functioning as a hormone that modulates intrinsic vago-vagal reflex pathways during illness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons.

A group of neurons in the caudal nucleus of the solitary tract (NTS) processes preproglucagon to glucagon-like peptides (GLP)-1 and -2, peptides that inhibit food intake when administered intracerebroventricularly. The GLP-1/2-containing neural pathways have been suggested to play a role in taste aversion and nausea because LiCl activates these neurons, and LiCl-induced suppression of food inta...

متن کامل

Noradrenergic neurons in the rat solitary nucleus participate in the esophageal-gastric relaxation reflex.

Activation of esophageal mechanosensors excites neurons in and near the central nucleus of the solitary tract (NSTc). In turn, NSTc neurons coordinate the relaxation of the stomach [i.e., the receptive relaxation reflex (RRR)] by modulating the output of vagal efferent neurons of the dorsal motor nucleus of the vagus (DMN). The NSTc area contains neurons with diverse neurochemical phenotypes, i...

متن کامل

Nesfatin-1 influences the excitability of gastric distension-responsive neurons in the ventromedial hypothalamic nucleus of rats.

The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of...

متن کامل

CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents.

Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hyp...

متن کامل

Parametric analysis of gastric distension responses in the parabrachial nucleus.

The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000